
Chapter 5

Distribution Theory

5.1 Test functions on Rn

We will consider three spaces of test functions: compactly supported smooth, Schwartz, and smooth functions,
respectively:

C∞c (Rn) ⊂ S(Rn) ⊂ C∞(Rn). (5.1.1)

We will often omit writing Rn. Now let us define the notion of convergence in each of these spaces:

Definition 5.1. (i) Let φn, φ ∈ C∞c . We say that φn → φ in C∞c iff there exists a compact set K
containing the supports of all φn and for any multi-index α:

lim
n→∞

sup
x∈Rn

|∂α(φn − φ)(x)| = 0.

(ii) Let φn, φ ∈ S. We say that φn → φ in S iff for all multi-indices α, β:

lim
n→∞

sup
x∈Rn

|xα∂β(φn − φ)(x)| = 0.

(iii) Let φn, φ ∈ C∞. We say that φn → φ in C∞ iff for all N ∈ N and any multi-index α:

lim
n→∞

sup
|x|≤N

|∂α(φn − φ)(x)| = 0.

Remarks 5.2. (a) Convergence in C∞c implies convergence in S, which implies convergence in C∞. For
example, let φ ∈ C∞c . Then sequence φn(x) := φ(x− n)/n converges to 0 in C∞, but it has no limit in S or
in C∞0 .

(b) As we discussed earlier in the course, S is a Fréchet (i.e., complete) space with semi-norms given
by (4.2.1). It can be shown that C∞ is also a Fréchet space with the semi-norms given by ||φ||α,N :=
sup|x|≤N |(∂αφ)(x)|. However this family of semi-norms would not make C∞c into a Fréchet space. That is
why it is more natural to induce the topology from the subspaces C∞(Kn) for a sequence of compacts Kn

that exhaust Rn (each of which is a Fréchet space). This explains the requirement of existence of a compact
K, and this construction makes Cc(Rn) into a complete space.
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5.2 Distributions, tempered distributions, and distributions with
compact support: definitions

Definition 5.3. (i) Define the space of distributions D′(Rn) to be (C∞c (Rn))′, the dual of C∞c (Rn)
(that is, the space of continuous linear functionals C∞c (Rn)→ C).

(ii) Define the space of tempered distributions S ′(Rn) to be (S(Rn))′, the dual of S(Rn) (that is, the
space of continuous linear functionals S(Rn)→ C).

(iii) Define the space of distributions with compact support E ′(Rn) to be (C∞(Rn))′, the dual of
C∞(Rn) (that is, the space of continuous linear functionals C∞(Rn)→ C).

The topology on each of these spaces are defined to be pointwise (i.e., weak-∗) topology: Tk → T in D′ iff
Tk(φ)→ T (φ) for every φ ∈ C∞c , and similarly for S ′ and E ′.

Remarks 5.4. (a) Due to (5.1.1), we have the inclusions

E ′(Rn) ⊂ S ′(Rn) ⊂ D′(Rn). (5.2.1)

(b) Let T be a distribution and φ a test function. Instead of writing T (φ) we will instead usually write 〈T, φ〉.
If f ∈ D′ and φ is a test function, instead of using the notation f(φ), we will start writing 〈f, φ〉.

Proposition 5.5. (i) A linear functional f on C∞c (Rn) is continuous (i.e., is a distribution f ∈ D′) iff
for any compact K ⊂ Rn there is C > 0 and m ∈ Z such that

|〈f, φ〉| ≤ C
∑
|α|≤m

||∂αφ||∞ for all φ ∈ C∞c with support in K.

(ii) A linear functional f on S(Rn) is continuous (i.e., is a tempered distribution f ∈ S ′) iff there is C > 0
and k,m ∈ Z such that

|〈f, φ〉| ≤ C
∑
|α|≤m
|β|≤k

||xα∂βφ||∞ for all φ ∈ S(Rn). (5.2.2)

(iii) A linear functional f on C∞(Rn) is continuous (i.e., is a distribution with compact support f ∈ E ′) iff
there is C > 0 and N,m ∈ Z such that

|〈f, φ〉| ≤ C
∑
|α|≤m

sup
|x|≤N

|(∂αφ)(x)| for all φ ∈ C∞.

Proof. Let us prove (ii). That (5.2.2) implies continuity is clear: φn → f in each ||·||α,β semi-norm implies that
〈f, φn − φ〉 → 0 by (5.2.2). Let us now prove the converse. Suppose f is continuous. Recall that semi-norms
||φ||α,β := ||xα∂βφ||∞ generate the topology on S, which means that the family of sets {f ∈ S : ||f ||α,β < δ}
for various α, β, and δ > 0, forms a subbasis for the topology of S. Thus if f is continuous, then f−1({z ∈
C : |z| < 1}) is open so contains an element of the base, i.e., a finite intersection of {φ ∈ S : ||φ||αj ,βj < δj}.
Take δ := min δj , m = max |αj | and k = max |βj |. Then if φ has ||φ||α,β < δ for all |α| ≤ m and |β| ≤ k,
we have | 〈f, φ〉 | < 1. Finally, use linearity: for arbitrary ψ ∈ S, define φ := δψ/

∑
|α|≤m,|β|≤k ||ψ||α,β . Then

from what we just proved, | 〈f, ψ〉 | < 1. This implies (5.2.2) with C = 1/δ.
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5.3 Examples of distributions

Example 5.6. Any f ∈ Lp, 1 ≤ p ≤ ∞ is a distribution, f ∈ D′, where we define its action on a test function
φ ∈ C∞c via

〈f, φ〉 :=

∫
Rn
g(x)φ(x) dx (5.3.1)

Note that φn → φ in C∞c implies 〈f, φn〉 → 〈f, φ〉. We will denote such a distribution by the same symbol
f . This is where notation 〈f, φ〉 pays off compared to the usual f(φ) which would be confusing together with
f(x).

Any f ∈ Lp, 1 ≤ p ≤ ∞, is, in fact, also a tempered distribution, f ∈ S ′, by the same logic.
However, f ∈ Lp, 1 ≤ p ≤ ∞, is not in general in E ′ unless f has a compact support.

Example 5.7. More generally, any locally integrable function f ∈ L1
loc(Rn) (meaning

∫
K
|f | dx < ∞ for any

compact K; note that L1
loc(Rn) includes any Lp(Rn)) also defines a distribution, f ∈ D′ (but not necessarily

in S ′ or E ′).
For example, the function e|x|

2

is in D′ but not in S ′ or E ′. The function 1 is in D′ and S ′ but not in E ′.
Example 5.8. Any finite Borel measure µ is in D′ and in S ′ if we define for a test function f :

〈µ, φ〉 :=

∫
Rn
φ(x) dµ(x).

Indeed, if φn → φ in S or in C∞c , then 〈µ, φn〉 → 〈µ, φ〉.
In general finite Borel measure do not have to be in E ′.

Example 5.9. Some non-finite Borel measures may also be in S ′, for example the Lebesgue measure is a
tempered distribution.

Example 5.10. The Dirac point measure at the origin δ0 is an example of a finite Borel measure. As such, it
is a tempered distribution with its action on φ ∈ S defined via 〈δ0, φ〉 :=

∫
φdδ0 = φ(0). Moreover, it is in

fact of compact support, δ0 ∈ E ′ since 〈δ0, φn〉 → 〈δ0, φ〉 whenever φn → φ in C∞.

Example 5.11. Any function f that satisfies |f(x)| ≤ C(1 + |x|)k for some real k is a tempered distribution
as it can be integrated against any Schwartz function.

log |x| is also a tempered distribution: even though it is not well defined at x = 0, it can be integrated
against any Schwartz function.

Example 5.12. An example of a distribution f ∈ D′ that isn’t a function nor a measure is the map φ 7→ ∂αf(x0)
(this also belongs to S ′ and E ′, of course).

5.4 Operations on distributions: distributional derivative

Intuition. Let us discuss operations on distributions. Addition and scalar multiplication are of course im-
mediately clear from the vector space structure. Warning: product of two distributions is not defined in
general!

One of the strengths of the distributions is that we can naturally define their derivatives. This notion
generalizes the usual notion of derivative for those distributions that come from the smooth functions.

The idea behind the definition below comes from the integration by parts: suppose a distribution f is
given by a smooth function, and let φ be a test function, then

〈f ′, φ〉 =

∫
f ′(x)φ(x) dx = −

∫
f(x)φ′(x) dx (5.4.1)

by the integration by parts (the boundary terms vanish).
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Definition 5.13. Let f ∈ D′(Rn). For any multi-index α, define the (distributional) derivative ∂αf ∈
D′(Rn) of f via

〈∂αf, φ〉 := (−1)|α| 〈f, ∂αφ〉 for any φ ∈ C∞c .

Remarks 5.14. (a) If f ∈ S ′, one defines ∂αf ∈ S ′ in the exact same way but using test functions in S instead
of C∞c . Similarly for f ∈ E ′.

(b) In particular, any locally integrable function has a distributional derivative (which need not have to
be a locally integrable function however).

Examples 5.15. (a) Because of the integration by parts (5.4.1), if f is a smooth function, then its usual
derivative and distributional derivative agree.

(b) If H(x) = 0 for x < 0 and H(x) = 1 for x ≥ 0 (so that H ∈ S ′), then

〈H ′(x), φ〉 = −〈H,φ′〉 = −
∫ ∞

0

φ′(x) dx = φ(x)|∞0 = φ(0) = 〈δ0, φ〉 ,

so that H ′ is the Dirac mass point at 0.
(c) It is clear that the derivative of δ0 is the distribution given by 〈δ′0, φ〉 = −〈δ0, φ′〉 = −φ′(0).

5.5 Operations on distributions: Fourier and inverse Fourier trans-
forms

Intuition. Recall that for f, φ ∈ S(Rn) we had the property
∫
f̂φ dx =

∫
fφ̂ dx (in fact this holds for f, φ ∈

L1(Rn). It is therefore natural to use this as a motivation for the definition below.

Definition 5.16. Let f be a tempered distribution f ∈ S ′. Then we define the Fourier transform of f to
be the tempered distribution f̂ ∈ S ′ given by〈

f̂ , φ
〉

:=
〈
f, φ̂
〉
, for any φ ∈ S. (5.5.1)

The inverse Fourier transform of f ∈ S ′ is defined to be f∨ ∈ S ′ given by

〈f∨, φ〉 := 〈f, φ∨〉 , for any φ ∈ S.

Remarks 5.17. (a) If f ∈ E ′, we can define its Fourier transform by viewing f ∈ E ′ ⊂ S ′: i.e., we are still

using (5.5.1) with test functions f ∈ S. In particular f̂ ∈ S ′ and not necessarily f̂ ∈ E ′. In fact, one can show

that f̂ is can be represented by a slowly increasing C∞ function, see [F, 9.11].

(b) If f ∈ D′ \ S ′, then we would need (5.5.1) for φ ∈ C∞c , but φ̂ is then not in C∞c , so this breaks down.

Examples 5.18. (a) Notice that δ̂0 = 1. More generally, δ̂x0
= e−2πix·x0 for any x0 ∈ Rn. Indeed,〈

δ̂x0 , φ
〉

=
〈
δx0 , φ̂

〉
= φ̂(x0) =

∫
Rn
φ(x)e−2πix·x0 dx.

(b) More generally, (∂αδx0)̂ = (2πix)αe−2πix·x0 .
(c) Even more generally, Fourier transforms of the linear combinations of delta functions and their deri-

vatives are precisely the trigonometric polynomials.
(d) Conversely, applying the inverse Fourier transform, we get (xα)̂ = (−2πi)−|α|∂αδ0.
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5.6 Operations on distributions: translations and reflections

Recall the notation φ̃(x) := φ(−x) and τy(φ)(x) := φ(x − y) for functions. Let us also define the dilation
δa(φ) := φ(ax) for a > 0. We can extend these to the distributions:

Definition 5.19. Let f ∈ D′.
(i) For t ∈ Rn, define the translation of f by t to be the distribution τt(f) ∈ D′ given by

〈τt(f), φ〉 = 〈f, τ−t(φ)〉 .

(ii) The reflection of f is the distribution f̃ ∈ D′ given by〈
f̃ , φ

〉
=
〈
f, φ̃
〉
.

(iii) For a > 0, the dilation of f is the distribution δa(f) ∈ D′ given by

〈δa(f), φ〉 =
〈
f, a−nδ1/a(φ)

〉
.

Remark 5.20. (a) These formulas are of course motivated by a simple change of variable.
(b) It is easy to see that these operations preserve spaces S ′ and E ′.
(c) For example, τt(δ0) = δt; δ̃x = δ−x and δa(δ0) = a−nδ0.

5.7 Operations on distributions: convolutions

Intuition. Note that if f, g, h ∈ S, then by Fubini’s theorem∫
Rn

(h ∗ g)(x)f(x) dx =

∫ ∫
h(x− y)g(y) dyf(x) dx =

∫
Rn
g(x)(h̃ ∗ f)(x)dx.

Definition 5.21. Suppose f ∈ S ′ and h ∈ S. Define the convolution of f and h as a tempered distribution
f ∗ h ∈ S ′ given by

〈f ∗ h, φ〉 :=
〈
f, h̃ ∗ φ

〉
, φ ∈ S.

Remarks 5.22. (a) In this case (f ∈ S ′ and h ∈ S) one can show that f ∗ h is a C∞ function.
(b) In general convolution of two tempered distribution does not have to exist.
(c) For f ∈ E ′, one can define the convolution of f and h ∈ C∞. Similarly can be defined the convolution

of f ∈ D′ and h ∈ C∞c . It can be shown that f ∗ h is a C∞ function in each of these cases.
(d) Moreover, one can in fact define the convolution of f ∈ D′ and h ∈ E ′. Then f ∗ h = h ∗ f ∈ D′. We

skip the proofs.

5.8 Operations on distributions: products

Definition 5.23. Let f ∈ S ′ and h ∈ C∞ such that |(∂αh)(x)| ≤ C(1 + |x|)kα for all α and some kα > 0.
Then we can define the product of f and h to be the tempered distribution fh ∈ S ′ given by

〈fh, φ〉 = 〈f, hφ〉 , φ ∈ S.

Remark 5.24. In other words, product of two distributions can be defined only in special situations.
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5.9 Properties of the distributional Fourier transform

Proposition 5.25. Let f, g ∈ S ′(Rn) and ψ ∈ S(Rn). Then for all y ∈ Rn, λ ∈ C:

(i) f̂ + g = f̂ + ĝ;

(ii) λ̂f = λf̂ ;

(iii)
̂̃
f =

˜̂
f ;

(iv) τ̂y(f) = f̂ e−2πiξ·y;

(v)
(
e2πiy·xf

)̂ = τy(f̂);

(vi) f̂ ∗ ψ = f̂ ψ̂;

(vii) f̂ψ = f̂ ∗ ψ̂;

(viii) ∂̂αf = (2πiξ)αf̂ ;

(ix) ∂α(f̂) = ((−2πix)αf )̂ ;

(x) (f̂)∨ = f .

5.10 Support of a distribution

Definition 5.26. For f ∈ D′(Rn) we define the support of f , supp f , to be the intersection of all closed
sets K with the property

φ ∈ C∞(Rn), suppφ ⊆ Kc ⇒ 〈f, φ〉 = 0.

Proposition 5.27. f ∈ D′ has compact support iff f ∈ E ′.

Proof. Suppose f ∈ E ′. Then the inequality in Proposition 5.5(iii) holds for some C,N,m. This means that if
suppφ ⊂ {|x| > N} then 〈f, φ〉 = 0. So supp f is bounded and therefore compact as it is closed by definition.

Conversely, suppose f ∈ D′ and supp f is compact. Thus supp f ⊆ {x : |x| ≤ N} for some N . Choose
ψ ∈ C∞c such that ψ(x) = 1 on {x : |x| ≤ N} and ψ(x) = 0 on {x : |x| ≥ N + 1}. Then for any φ ∈ C∞,
we have that φ − φψ has no support in |x| ≤ N , so 〈f, φ〉 = 〈f, φψ〉. Now by continuity of f , we can take
K = {x : |x| ≤ N + 1} in Proposition 5.5(i) to get

〈f, φ〉 = 〈f, φψ〉 ≤ C
∑
|α|≤m

||∂α(φψ)||∞

It is easy to see that the right-hand side of this expression can be bounded by C̃
∑
|α|≤m sup|x|≤N+1 |(∂αφ)(x)|.

This proves Proposition 5.5(iii), i.e., f ∈ E ′.

Example 5.28. It is easy to see that δx0 has {x0} as its support. Moreover, any of the derivatives of δx0 has
{x0} as the support. What about the converse?

Proposition 5.29. Suppose f ∈ S ′ has supp f = {x0}. Then there exists an integer m and complex numbers
cα such that

f =
∑
|α|≤m

cα∂
αδx0

. (5.10.1)
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Proof. Without loss of generality, assume x0 = 0.
Let f ∈ S ′ has supp f = {0}. By Proposition 5.5(ii), there are some C,m, k such that

|〈f, φ〉| ≤ C
∑
|α|≤m
|β|≤k

||xα∂βφ||∞ for all φ ∈ S(Rn). (5.10.2)

Let φ ∈ S. We are heading towards proving that 〈f, φ〉 is equal to
∑
|α|≤k cα∂

αφ(0) for some constants

cα’s. Let us apply Taylor’s theorem to write φ(x) =
∑
|α|≤k

1
α! (∂

αφ)(0)xα + h(x), where h ∈ O(xk+1) as

x → 0. Note that h /∈ S, so we cannot apply f term-by-term. To fix this, let us introduce η ∈ C∞c that is 1
in a neighbourhood of 0. Then

φ(x) = η(x)

∑
|α|≤k

1
α! (∂

αφ)(0)xα

+ η(x)h(x) + (1− η(x))φ(x). (5.10.3)

Now note that (1 − η)φ has support in R \ {x0}, so 〈f, (1− η)φ〉 = 0 by the definition of supp f =
{0}. We also claim that 〈f, ηh〉 = 0: rewrite η(x)h(x) = η(x)h(x)η(x/ε) + η(x)h(x)(1 − η(x/ε)); then
〈f, η(x)h(x)(1− η(x/ε))〉 = 0 by the same support argument as before, and the ||xα∂β(·)||∞ semi-norms of
η(x)h(x)η(x/ε) go to 0 for all |α| ≤ m and |β| ≤ k because ∂βh(0) = 0 for all |β| ≤ k. So by (5.10.2),
〈f, ηh〉 = 0.

So we conclude that

〈f, φ〉 =
∑
|α|≤k

1
α! (∂

αφ)(0) 〈f, η(x)xα〉 =
∑
|α|≤k

cα(∂αδ0)(φ),

where cα = (−1)|α| 〈f, η(x)xα〉 /α!.
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